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Abstract Motivation: A novel mixed-integer optimization framework is proposed for the
design and analysis of regulatory networks. The model combines gene expression data and
prior biological knowledge regarding the potential for regulatory interactions between genes
and their corresponding transcription factors. The formalism provides significant advantages
over available modeling methodologies in that the complexity of the regulatory network can
be explicitly taken into account, multiple alternative structures can be systematically gener-
ated and finally robust and biological significant regulators can be rigorously identified. The
original non-convex mixed integer reformulation is appropriately linearized and the resulting
MILP is effectively optimized using standard solvers. The versatility is demonstrated using
gene expression and binding data from an E. coli case study during transition from glucose
to acetate as the sole carbon source.

Keywords Bioinformatics · Mixed integer linear optimization · Gene regulation

1 Introduction

Significant efforts have been made experimentally and computationally, to identify
transcription factors (TF), their target genes and the interaction mechanism that control
(regulate) gene expression (Iyer et al. 2001; van Steensel et al. 2003). However the produc-
tion of a TF is a necessary but not sufficient condition for transcription initiation and reg-
ulation. Therefore, regulator transcription levels are generally not appropriate measures of
transcription factor activity (TFA). Recently, methods combining TF-gene connectivity data
and gene expression measurements have emerged in order to quantify these regulatory inter-
actions (Bussemaker et al. 2001; Yeung et al. 2002; Alter and Golub 2004; Gao et al. 2004;

P. T. Foteinou · E. Yang · I. P. Androulakis (B)
Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
e-mail: yannis@rci.rutgers.edu

G. K. Saharidis · M. G. Ierapetritou · I. P. Androulakis
Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA

123



264 J Glob Optim (2009) 43:263–276

Kato et al. 2004; Boulesteix and Strimmer 2005; Kao et al. 2005; Tran et al. 2005; Sun et al.
2006). The main goal of this reverse engineering is to identify the activation program of
transcription modules under particular conditions (Wang et al. 2002) so as to hypothesize
how activation/deactivation of gene expression can be induced/suppressed (Ng et al. 2006).
Aside from the development of descriptive models that correlate TFA and expression of target
genes, a critical question becomes how to identify those TFs that significantly contribute to
regulation and should be modulated. Along those lines (Gao et al. 2004) speculate that the
mRNA profile of the target gene should be similar to the reconstructed TFA for the regulat-
ing proteins, (Sun et al. 2006) claim that accurate binding information should lead to robust
TFA reconstructions whereas (Chen et al. 2005) develop a greedy-based selection of critical
regulators.

In the present study we explore an optimization-based model that identifies optimal recon-
struction and architectures in a rigorous manner. We propose systematic construction of alter-
native regulatory architectures and propose a consistency metric for assessing the robustness
specific transcription factors. We further evaluate the biological implications of the multiple
alternative structures in their biological context and demonstrate how a systematic framework
can define the basis for a consistent hypothesis generation mechanism related to putative reg-
ulatory interactions. Another key aspect of our model is that we can take known directionality
in regulation of a transcription factor into account. Complementary to this we can also infer
the role for those regulators that their activity on certain promoter regions is unknown—it can
be either activation or repression (unknown). Identifying robust transcription factors might
serve as a diagnostic tool for in silico target identification (Sun et al. 2006).

2 Methods

2.1 Network model

The rate of production of mRNA is modeled using simple synthesis and degradation terms
(Thomas et al. 2004; Sun et al. 2006) expressed by a set of reactions which involve the
specific binding of TFs to DNA sequences as well as the recruitment of RNA polymerase
I complex. The dynamics of gene expression can thus be described as in (1) expressing a
balance between promoter activity and mRNA degradation (Tran et al. 2005) modeled by a
power-law kinetics (Savageau 1976). The activities of transcriptions factors (TFA) are termi-
nal signals controlling transcriptional regulation. Therefore, TFAs represent gene expression
dynamics in an attractive way as they represent a surrogate of the integrated contribution of a
TF to the regulation of gene expression. Since TFs affect both the synthesis and degradation
terms of the corresponding mRNA, with rate constants ks and kd respectively, in the general
case we may assume that a different set of factors contributes to the synthesis and degradation
respectively (1). The index “i” denotes a gene being regulated by transcription factor “j” and
“k” respectively, “t” denotes time. TFA and DFA denotes the activity of the regulator and
degradation factors respectively, and [mRNA] denotes the concentration of the mRNA of the
corresponding gene. This power-law rate expression assumes a rate of synthesis depending
on the activities of TFs whereas the degradation term is also considered proportional to the
actual mRNA levels (Tran et al. 2005). The interaction strengths are denoted by πij. Making
the quasi-steady state approximation for mRNA(i, t) and solving the corresponding algebraic
equation leads to (2), accounting for an appropriate normalization with respect to the initial
conditions, where without loss of generality we have collectively represented the ratio of the
activities by TFA (Tran et al. 2005). Finally in (3) log-transformation results in a generalized
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linear expression, where the E matrix is the log-ratio of the gene expression level of gene i
at time point t relative to the initial condition (t = 0), and its dimensions are Ng (number of
genes)×NT (number of time points), π = {

πi j
}

is the connectivity matrix whose entries are
constant and characterize the strength of interaction between any regulatory pair (i, j) with j
referring to the regulator and i to the target gene. The dimensionality of connectivity matrix
is Ng × NTF (number of transcription factors). The matrix P describes the inferred effective
dynamic activities for each regulator, expressed also as log-ratios, during the time course of
the experiment. In certain decomposition schemes (Tran et al. 2005) π = {

πi j
}

is treated as
an unknown variable that must be identified. In our formulation we opted to treat the strength
coefficients as surrogates for the binding affinity of the transcription factor to the promoter
region. In the mathematical formulation, π = {

πi j
}

is similar to the Hill-Coefficient. Con-
sidering the binding of transcription factors to the promoter region, we hypothesize that the
strength of the binding interactions is related to the cooperative binding interactions of the
separate binding domains in the transcription factor. Therefore, the interaction coefficients
will be considered to be either known from experimental studies (Lee et al. 2002; Harbison
et al. 2004) or determined computationally by associating binding affinities to position weight
matrices (Stormo and Fields 1998).

d[mRNA(i, t)]
dt

= ks

∏

j

TFA(j, t)πij − kd

∏

k

DFA(k, t)πik [mRNA(i, t)] (1)

[mRNA(i, t)] = ks

kd

∏

j
TFA(j, t)πij
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k
DFA(k, t)πik

= ks

kd
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j

TFA(j, t)πij
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j
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TFA(j, t)

TFA(j, 0)

]πij

(2)

E =
∏

·P, E = log

[ [mRNA(i, t)]
[mRNA(i, 0)]

]
, P = log

[
TFA(j, t)

TFA(j, 0)

]
, π = {

πij
}

(3)

In addition to the strength of the interactions, the directionality of the activation is also
critical given that transcription factors are known to exhibit multifunctional characteristics
(Drazinic et al. 1996). TFs are known to act as activators, repressors or exhibit both character-
istics depending on conditions. Therefore, given the effective activity of a transcription factor
we need to be able to simulate its corresponding effect, whether it is activating or repressing
the expression of the target genes. Assuming for simplicity that one TF regulates a single
gene, then depending on the nature of the interaction the effect of changes in the TFA will
have distinct effects on the changes in gene expression. If the activity of the factor increases
(panel a) and if the factor activates the expression of the gene, then the corresponding expres-
sion should increase (panel b), whereas if the factor represses the expression of the gene,
then the increase in activity should result in decrease in the expression of the gene (panel c).
Equivalent arguments can be made for the case where the activity of the factor decreases,
Fig. 1. We model the activation/repression by introducing a new variable, Peff (i, j, t) which
represents the effective TFA of a regulator for gene “i” given that the type of interaction, either
repressor or activator, has been identified. The definition is done through the introduction
of a binary variable, r(i, j) that takes the value of 1 if the TF(j) activates gene (i), and zero
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Fig. 1 Activation/repression of gene expression

otherwise (4a). The effective transcription factor activity Peff (i, j, t) is then defined through
(4b). The superstructure of all possible regulatory interactions are defined based on (5).

r(i, j) =
{

1 TF(j) activates gene(i)
0 otherwise

(4a)

Peff (i, j, t) = [
2 · r(i, j) − 1

] · P(j, t) (4b)

D(i, j) =
{

1 TF(j) regulates gene(i), i.e. π(i, j) �= 0
0 otherwise, i.e. π (i, j) = 0

(5)

Finally, we approximate the log-ratio of the expression data as per Eq. 6.

E(i, t) =
∑

j

πij · Peff (i, j, t) + error (6)

The “error” term is incorporated to simulate error-in-measurements, potential sources of
uncertainty and the general lack of detailed knowledge about transcription factors, connec-
tivity and the relationship between binding and activity.

2.2 Predicting alternative regulatory structures

It has long been hypothesized that alternative pathways connecting regulators and targets
do exist and the implications are significant in order to understand the cellular behavior
(Wagner and Wright 2007). The systematic computational identification of putative regu-
latory structures would therefore enable a more detailed analysis. Within an optimization
framework however, such alternative structures can be identified and critical nodes whose
removal would be lethal can be speculated. Similarly, interchangeable nodes can also be
proposed. These sub-optimal alterative structures provide mechanisms by which an organ-
ism compensates for changes in environmental conditions. Therefore, while the response
may not be optimal, the organism is more flexible and remains viable under a wide range of
environmental conditions. One piece of evidence which supports the activation of alterative
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structures is the continuing viability of different E. coli strains despite knockouts of important
regulatory proteins. If alternative network architectures do not exist, then the viability of a
given strain would be severely compromised. Therefore, we believe that our method of deci-
phering alternative regulatory networks corresponds biologically to the inherent flexibility
exhibited by organisms.

2.3 Analysis of regulatory networks

Deciphering the structure of regulatory networks should be considered as the prelude to fur-
ther analyses that attempt to elucidate putative roles of the regulators rather than a rigorous and
restrictive reconstruction of experimental data. After all, it is widely accepted that multiple,
alternative, regulatory networks can reproduce experimental data (Tran et al. 2005). As such,
a number of questions emerge, namely: Can these networks be identified in a systematic and
unbiased manner? Are there any persistent interactions that emerge from multiple architec-
tures? Are there specific transcription factors whose activity profiles remain robust across
multiple realizations? Can the specific function of the undetermined factors, i.e., factors can
act either as activators or repressors, be systematically determined? Do preferential patterns
emerge in terms of the nature of these factors i.e., activators or repressors?

We are proposing a mathematical programming approach to address these questions. The
model will be presented in detail in Sect. 2.4. In the next section the issue of nonconvexity
of Eq. 4b is first considered.

2.4 Model linearization

As mentioned above the definition of Peff in (4b) introduces a non-convex bilinearity in the
formulation due to the product of the continuous variable P(j, t) and the binary variable r(i, j).
However, this product is exactly linearized through the introduction of the set of constraints
defined in (7). In the case of a repressor the general form reduces to (7a). The second con-
straint is inactive (M is a big number) whereas the first constraint forces Peff (i, j, t) = −P(j, t).
The implication is that because “j” acts a repressor of “i” if the activity of P(j, t) increases, i.e.,
P(j, t)>0, the effect of E(i, j, t) should be of the opposite sign and therefore result in reduction
of E(i, j, t), i.e, E(i, j, t)<0. Similarly, if the activity of P(j, t)<0, because “j” acts as a repres-
sor, then reduction in its activity should enhance the expression of E(i, j, t), i.e., E(i, j, t)>0.
When r(i, j) = 1(“j” acts as an activator of “i”) the system reduces to form (7b) which makes
the first constraint redundant, whereas the second constraint forces Peff (i, j, t) = P(j, t) and
therefore it acts as an activator. NTF is the number of transcription factors, Ng is the number
of genes, and NT is the number of time points.

general form

−r(i, j) · M − P(j, t) ≤ Peff (i, j, t) ≤ r(i, j) · M − P(j, t)
[
r(i, j) − 1

] · M + P(j, t) ≤ Peff (i, j, t) ≤ [
1 − r(i, j)

] · M + P(j, t)

(a) modeling a repressor: r(i, j) = 0

−P(j, t) ≤ Peff (i, j, t) ≤ −P(j, t)

−M + P(j, t) ≤ Peff (i, j, t) ≤ ·M + P(j, t)

(b) modeling an activator: r(i, j) = 1

−M − P(j, t) ≤ Peff (i, j, t) ≤ M − P(j, t)

P(j, t) ≤ Peff (i, j, t) ≤ P(j, t)

(7)
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2.5 Integer optimization formulation

We propose a mixed-integer formulation able to effectively address the aforementioned ques-
tions in a unified framework. The complexity of the regulatory network is controlled through
the introduction of a binary variable z(j) which denotes the existence, z(j) = 1, or non-exis-
tence of a particular regulator’s activity z(j) = 0. It should be emphasized that eliminating
the effect of a regulator implies blocking the activity of the TF and not, necessarily, the
expression of the corresponding gene. The underlying assumption behind this modeling
exercise is to identify what types of alternative structures can be constructed that reproduce
optimally the experimental expression data. The complexity of the network is controlled by
setting the required number of non-zero elements in this variable set. Furthermore, alternative
structures for the same number of transcription factors can be generated by introducing appro-
priate cuts (8) that exclude previous integer solutions, i.e., combinations of non-zero z(j)’s
(Biegler et al. 1997).

∑

j∈Nk

z(j) −
∑

j∈Bk

z(j) ≤ ∣
∣Nk

∣
∣ − 1

Nk = {j|zk(j) = 1}, Bk = {j, |zk(j) = 0}
(8)

In order to identify structurally robust elements of the regulatory architecture we introduce
a robustness metric which quantifies the number of times a particular TF appears in each
of the alternative structures in conjunction with the robustness of the reconstructed activity
profile. The metric is therefore: R(j) = [f(j)/S]*C(j), where R(j) is the robustness of TF “j”
when we generate multiple network modules, f(j) describes the frequency of TF j across the
multiple solutions S (simply it shows how many times TF j appears in different network archi-
tectures), C(j) corresponds to the average Pearson’s Correlation coefficient for the multiple
inferred activities (P(j, t)) of TF j and M is the total number of alternative structures under
consideration.

The optimization framework attempts to deconvolute the gene expression profiles in terms
of a reduced “basis set” defined by the activities of the corresponding TFs. The aim is to
achieve the best possible decomposition while utilizing prior knowledge about the systems,
in terms of known interactions as well as the possibly known directionality of a subset of
those interactions (activation/suppression). Furthermore, we are interested in identifying sys-
tematically alternative structures in order to unravel the potential underlying structure of the
regulatory network by pint pointing robust and, presumably, critical regulators. All of the
above questions can indeed be addressed by the solution of the mixed-integer linear optimi-
zation problem, miSARN—mixed integer Synthesis and Analysis of Regulatory Networks
(9), solved using the GAMS modeling software (Brooke et al. 2004) running CPLEX 9
for the solution of the corresponding MILP. The parameter estimation problem is kept lin-
ear by replacing the error term with the positive and negative slacks e+ and e− which are
subsequently minimized.

mixed-integer Synthesis & Analysis of Regulatory Networks (miSARN)

min
∑

i

∑

t

e+(i, t) + e−(i, t)

subject to

E(i, t) −
∑

j

π (i, j)Peff (i, j, t) = e+(i, t) − e−(i, t) ∀i, t
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∑

j

z(j) = m ≤ NTF

∑

j

D(i, j) · z(j) ≥ 1 ∀i

−r(i, j)M − P(j, t) ≤ Peff (i, j, t) ≤ r(i, j)M − P(j, t) ∀i, j, t

[r(i, j)−1]M + P(j, t) ≤ Peff (i, j, t) ≤ [1 − r(i, j)]M + P(j, t) ∀i, j, t

z(j)P min ≤ P(j, t) ≤ z(j)P max ∀j, t
∑

j∈Nk

z(j) −
∑

j∈Bk

z(j) ≤ ∣
∣Nk

∣
∣ − 1 (9)

Nk = {j|zk(j) = 1}, Bk = {j, |zk(j) = 0}
D(i, j) =

{
1 π (i, j) �= 0
0 π (i, j) = 0

∀i, j

P(j, t), Peff (i, j, t) ∈ �
e+(i, t), e−(i, t) ∈ �+ ∀i, j, t

z(j), r(i, j) ∈ {0, 1} ∀i, j

i = 1, . . . , Ng; j = 1 . . . , NTF; t = 1 . . . NT

3 Results

Temporal expression profiles of E. coli during transition from glucose to acetate as the sole
carbon source were detected using DNA microarrays. The importance of such experiment
lies on the premise that glucose and acetate are utilized by distinct metabolic pathways and
thereby understanding such profiles in different carbon sources gives us a more thorough
insight about the dynamic behavior of E. coli (Oh et al. 2002). The temporal E. coli expres-
sion data as well as the connectivity matrix for this system are publicly available at http://
www.seas.ucla.edu/~liaoj/. The data included the log transformed expression levels (relative
to initial time point) of 100 genes recorded at 10 time points. Such expression data have
been part of studies (Kao et al. 2004; Boulesteix and Strimmer 2005; Pournara and Wernisch
2007). The corresponding connectivity matrix given the available information of RegulonDB
(Salgado et al. 2001) database. Based on RegulonDB information we fix the binary variables
r(i, j) to be either 0 or 1 if j is known to repress or activate gene i, respectively. All others are
treated as variables whose type of regulation will be determined based on the solution of the
optimization problem (predicting the regulatory role of three transcription factors that are
known to regulate six target genes). Therefore, the final MILP formulation contains 37 binary
variables including 30 which determine whether a given transcription factor is used, and 7
which characterize the nature of the interaction (activator/repressor) for the undetermined
pairs, as explained in greater detail in Sect. 4.

3.1 Systematic generation of alternative regulatory structures

The complete regulatory structure is composed of 30 transcription factors. Given the hard
constraint that each gene must be regulated by at least one TF, the miSARN formulation
becomes infeasible if less than 18 factors are used since this many factors are needed to
guarantee that all genes are properly regulated, that is there is no combination of less than
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Fig. 2 Reconstruction error as a function of the number of active transcription factors

18 TFs that would make sure each gene is regulated by at least one factor. Varying the con-
trol parameter “m” in the range of 18–30 TF generates an equivalent non inferior set as
shown in Fig. 2. Interestingly we observe that there are five different network architectures
(m = 26…30) that generate architectures resulting in the same reconstruction error, despite
the fact that each utilizes a different number of TFs.

Given the availability of these alternative structures, we proceed to evaluate the robustness
of each factor across multiple solutions. The results are summarized in Table 1. It is clear that
a critical subset emerges that not only persist as a selection of active TF, but also the corre-
sponding reconstructed profiles are very robust across multiple solutions. The reconstructed
profiles for all factors across all the 13 solutions (m = 18…30) are depicted in Fig. 3. For each
of the cases that result in the lowest reconstruction error (m = 26, 27, 28 and 29) we evaluate
the number of alternative structures for each value of m that generate networks with the same
reconstruction error. This is achieved by activating the integer cuts that eliminate the previ-
ous integer optimal solution. The miSARN formulation identifies 8 alternative structures for
m = 29, 24 structures for m = 28, 32 structures for m = 27 and 16 structures for m = 26. In
total 80 alternative structures with different number of factors for each family and different
connections are identified that result in the same approximation error. The implications of the
robust selection as well as the alternative architectures are discussed in the following section.
Typical reconstructed expression profiles are provided in Fig. 4.

4 Discussion

Analysis of the results of Table 1 provides us with a list of putative critical regulators, which
are characterized by robust activity profiles. Concentrating on the sub-set of regulators that
correspond to R(j) = 1, we identify the following factors: Ada, CysB, FadR, GatR, LeuO, Lrp,
PurR, TrpR, and TyrR.ll to play a critical role in the metabolism of E. coli when carbon source
transition occurs from glucose to acetate. In particular, Ada regulates aidB, which belongs
to the adaptive response genes and encodes for a protein that is homologous to mammalian
acyl coenzyme A dehydrogenases. This activation is crucial during either anaerobiosis state
or acetate metabolism (Landini et al. 1994). Moreover, all the other regulators influence
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Table 1 Robustness index for all
transcription factors

TF name Relative f(j) C(j) R(j)
connectivity

Ada 1 13 1.0 1.0
CysB 4 13 1.0 1.0
FadR 3 13 1.0 1.0
GatR 4 13 1.0 1.0
LeuO 3 13 1.0 1.0
Lrp 6 13 1.0 1.0
PurR 3 13 1.0 1.0
TrpR 3 13 1.0 1.0
TyrR 6 13 1.0 1.0
ArcA 18 13 0.9 0.9
PhoB 5 13 0.9 0.9
FIS 7 11 1.0 0.9
NarL 9 13 0.9 0.9
CRP 21 13 0.9 0.9
RpoE 8 13 0.9 0.9
RpoS 5 13 0.7 0.7
FruR 7 13 0.7 0.7
OmpR 3 13 0.6 0.6
IHF 12 13 0.6 0.6
IclR 4 12 0.9 0.6
GlpR 1 8 1.0 0.5
LexA 1 5 1.0 0.4
PspF 1 5 0.6 0.4
FNR 16 10 0.4 0.2
CsgD 3 2 1.0 0.2
Rob 3 1 1.0 0.2
SdiA 1 5 0.2 0.1
RpoN 1 8 0.2 0.1
GalR 3 7 0.0 0.0
RcsAB 1 4 0.0 0.0

the expression of crucial metabolic genes necessary during the specific growth arrest. CysB
regulates genes essential to sulfur utilization and nitrogen metabolism whereas GatR regu-
lates genes important to galactol utilization and transport. In addition to this, PurR is a key
repressor protein for purine nucleotide synthesis and it is likely to coregulate other genes for
de novo purine nucleotide synthesis (Rolfes and Zalkin 1988). Meanwhile, FadR is charac-
terized as a global regulator in fatty acid biosynthesis and degradation (DiRusso et al. 1992)
and the leucine responsive regulatory protein (Lrp) is another global regulator of metabo-
lism in E. coli (Calvo and Matthews 1994). Furthermore, GatR regulates genes essential to
galacticol utilization and transport and in Chen and Wu (2005) it is emphasized that LeuO
is characterized by a gene silencing activity. Such activity is integral to the regulation of
prokaryotic and eukaryotic gene expression and given that we are allowed to “target” such
transcription factors we are closer to unraveling the underlying complexities of gene regu-
lation. Regulators such as TrpR and TyrR are characterized as major transcription regulators
for a group of genes that are essential for aromatic amino acid biosynthesis and transport
in E. coli (Lawley and Pittard 1994; Lawley et al. 1995). Equally important is the analysis
of the robustness characteristics of the functional charctaerization of the regulators whose
activity (activator/repressor) is not uniquely determined. Out of the 30 TFs three have been
experimentally assigned a dual function (act as either activator or repressor). These TFs along
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Fig. 3 Reconstruction of TFA profiles

with their target genes are: (1) CRP: galE, galK, galT, prop; (2) LRP: kbl; (3) PhoB: ugpB,
ugpE. The inferred role of the 3 dual TFs across the 13 multiple solutions is robust for all the
dual TFs. Specifically, there is only one solution out of 13 in which the transcription factor
CRP acts as a repressor. The remaining solutions identify the following relations: (1) CRP:
activates galE, galK, galT; represses proP; (2) LRP: activates kbl; (3) PhoB: represses ugpB,
ugpE.

The incorporation of the cuts excluding previous solutions for a given value of m and
the generation of the alternative structures generates equally interesting results. The multiple
architectures for m = 29 effectively define networks in which one TF is eliminated from
the network (Fig. 5). There are four distinct modules that give rise to these solutions and
all cases effectively amount to the elimination of the activity of a factor provided that its
contribution can be represented by another factor. The interchangeable pairs are: (PspF,
RpoN), (SdiA, RcsAB), (CsgD, OmpR), and (Rob, GalR). These alterative structures may
prove to be important in explaining the viability of different strains of E. coli as well as
its ability to tolerate a variety of environmental conditions while still retaining its viability.
Therefore, these alternative structures are important aspects of the network and allow us to
separate the vital connections from those that impart flexibility. These findings, albeit com-
putational, can be characterized as both challenging and promising on the premise that there
is on-going research about identifying clinically intervention points whose effective combi-
natorial inhibition would improve the process of therapeutic drugs. There are several studies
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Fig. 4 Reconstruction of gene expression profiles

Fig. 5 Alternative equivalent regulatory structures. Square: TF; oval: genes; dark squares: interchangeable
TFs. CsgD denotes the activity of the corresponding TF, csgD denotes the gene
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(Covert et al. 2004; Kato et al. 2004) that seek to unravel the underlying principles that gov-
ern gene regulation by either combining sequence data with binding data such as Chip-chip
data and expression data or by knocking out (deleting) transcription factors and binding sites
with the goal of revealing more about functional regulatory interactions and pathways. The
Phage-Shock-Protein System shown in the upper left is regulated by PspF and RpoN pro-
moters in Y. enterocolitica, a bacteria very similar to E. coli, and it was found that a PspF null
mutation did not impart lethality upon the specific strain, but rather caused a slight decrease
in the growth rate of the strain, as was the deletion of the RpoN promoter region. In fact
the deletion of either the PspF or the RpoN sequence from the promoter region yielded a
strain that was nearly indistinguishable (Maxson and Darwin 2006), suggesting that with
the deletion of a single promoter sequence, in the pspA gene, the other transcription factor
can indeed compensate for the loss in control. For the regulators of ftsZ, it was found that
mutants in rcsB which is part of the rcsAB complex had very little difference from that of
the wild type strain under normal growth conditions (Gervais et al. 1992). However, despite
the similarities under normal growth conditions, it was hypothesized that under different
environmental conditions, the presence of a functional rcsB protein may alter the overall
response. Additionally, it was found that while the over-expression of sdiA would increase
the expression of ftsZ, the deletion of sdiA like the mutations of rcsB did not alter the ability
of the cell to divide, and appeared relatively normal under standard conditions (Wang et al.
1991). This is similar to the properties of rcsAB. However, what has not been examined is
whether a mutant in both of the sidA and rcsB genes would lead to a significant change
in the overall behavior of the organism understand conditions. Similarly, it was found that
GalR transcription factor was not necessary under rich growth conditions (Chapuy-Regaud
et al. 2003). Currently, there are no studies concerning the null Rob mutants under normal
growth conditions, though it was found that under minimal medium conditions such as glu-
cose starved medium that the lack of the Rob transcription factor alters the behavior of E.
coli, though sub-lethally (Kakeda et al. 1995). One of the limitations in our formulation is
that the structure in the lower left of Fig. 5 can be obtained in which CsgD and OmpR are
interchangeable. When this structure is given as a directed acyclic graph, the symmetry breaks
down for OmpR is found to be a regulator of the transcription factor CsgD, and CsgD autore-
gulates. Therefore, even though the structures appear to be equivalent, they are not. In spite of
the shortcomings in the representation, by generating multiple solutions, and examining the
graphs that arise, such inconsistencies can be post-processed into a network representation.
The experimental evidence that the mutant strains are indistinguishable from the wild type
strains under normal growth conditions validates the computational results which indicated
that the error derived from the alternative structures is equivalent. Our results suggest that the
removal of both transcription factors would cause a large difference in the error. Therefore
it suggests that if there were double knockouts of both of these transcription factors, there
would be significant changes in the overall response of the organism. It must be stressed,
that while these links show no effect under normal growth conditions, many of these links
are significant under different environmental conditions and therefore function to provide
flexibility to the organism in the face of changing environmental factors. In addition to the
ability to change the overall gene expression profiles, our framework also allows us to easily
fix the overall activity of a regulator or remove a regulator depending on conditions which
alter the ability of a transcription factor to be activated. Therefore, we assert that in addition
to its ability to quantify the strength of the interactions, our framework also has the ability
to determine the existence of necessary regulatory structures.
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5 Conclusions

Our results demonstrate how an optimization-based model (MILP formulation) can provide us
with meaningful biological insights on gene regulation. Our model integrates high-through-
put data, network connectivity information as well as known directionality in regulation for
specific regulatory pairs, with the aim to reveal underlying principles of the network architec-
ture. Our model can provide both optimal reconstructions and multiple alternative network
architectures. We further introduce a metric to distinguish a subset of critical transcription
factors, which coupled with a system of integer cuts, provides us with the combinatorial solu-
tion of deleting transcription factors. Our model incorporates prior biological knowledge in
terms of the effective role of a transcription factor as a regulator or repressor whilst it can
decipher the directionality of those TFs that their regulatory role is unknown.
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